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Abstract

When the Ritz method, the Galerkin’s method and the finite element method are adopted for the vibration analysis of

thin plates, the natural frequencies and mode shapes can normally be obtained accurately. However, the corresponding

modal stress resultants usually violate the natural boundary conditions at the free edges and contain erroneous oscillations.

Therefore, the accuracy of modal stress resultants obtained by such methods is uncertain. In this study, a meshfree least

squares-based finite difference method (LSFD) is proposed for evaluating the vibration solutions of completely free plates.

Examples treated include circular plates, elliptical plates, lifting-tab shaped plates and 451 right triangular plates. It will be

shown that the LSFD method not only furnishes accurate natural frequencies, but also yields excellent modal stress

resultants that satisfy the natural boundary conditions of the free edges and are smooth in their distribution over the plate

domain.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Not known to many structural engineers, a pontoon-type, very large floating structure (VLFS) may be
modeled as a giant plate with free edges [1]. As these VLFSs are relatively flexible in the sea, hydroelastic
analyses have to be performed so as to determine the dynamic responses of the VLFSs under the action of
waves. When adopting the frequency domain approach for the hydroelastic analysis, it is necessary to obtain
very accurate frequency values, mode shapes and modal stress resultants up to very high number of modes.
Unfortunately, accurate distributions of stress resultants for such VLFSs modeled as freely vibrating plates are
often very difficult to obtain either analytically or numerically, although accurate natural frequencies and
mode shapes of vibrating plates can be obtained by using the finite element method.

For completely free circular plates, exact solutions for natural frequencies were obtained in terms of Bessel
functions by Itao and Crandall [2] and Leissa [3]. Besides, numerical solutions for natural frequencies were
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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obtained by Sato [4], Narita [5], Kim and Dickinson [6] and Lam et al. [7]. In addition, the numerical solutions
for natural frequencies for completely free annular plates were presented in Leissa’s book [3].

For completely free elliptical plates, Sato [4] obtained the solution of the equation of motion in terms of
Mathieu functions and modified Mathieu functions and gave the natural frequency values for the first five
doubly symmetric modes. The numerical solutions for natural frequencies were also obtained by Beres [8],
Narita [5] and Lam et al. [7] using the Ritz method. The mode shapes for the first six modes of a completely
free elliptical plate were presented by Lam et al. [7]. The experimental results for relative frequencies and nodal
patterns of a brass elliptical plate were presented in Leissa’s book [3].

Apart from circular and elliptical plates, vibration solutions for square and rectangular plates with free
edges have been obtained. In Leissa’s book [3], many numerical and experimental results of frequency
parameters, nodal patterns and mode shapes for the completely free square and rectangular plates are given.
More recently, Gorman [9,10], Li [11] and Oosterhout et al. [12] solved the vibration problem of square and
rectangular plates with free edges using various numerical techniques such as the superposition method, the
reciprocal theorem method, and the Ritz method.

To date, relatively little results can be found in the literature for the vibration of completely free plates with
other more general shapes. These completely free vibrating plate results include experimentally obtained
relative frequencies and nodal patterns for 451 right triangular brass plates [3,13], several nodal patterns
for equilateral triangular plates, regular pentagonal, hexagonal and octagonal plates, and a semicircular
plate [3,14].

All foregoing analytical and numerical studies were carried out by using the classical thin-plate theory.
For thick plates, the Mindlin plate theory must be used to incorporate the significant effects of transverse
shear deformation and rotary inertia on the vibration solutions. Irie et al. [15] derived exact solutions for
the natural frequencies of circular Mindlin plates. Liew et al. [16] presented the frequency parameters for
the completely free elliptical Mindlin plates using the Ritz method. Wang et al. [17] presented exact
solutions for frequencies, as well as mode shapes and stress resultants for completely free circular Mindlin
plates.

Based on the literature survey, we find that the accurate distributions of stress resultants obtained based on
the classical thin plate theory for completely free circular and elliptical plates are not available in the literature.
It was also revealed that for rectangular plates with free edges, the stress resultants obtained by the classical
thin-plate theory and using the Galerkin’s method, the Ritz method and the finite-element method do not
strictly satisfy the natural boundary conditions and they often contain erroneous ‘‘oscillations’’ [18,19].
Therefore, the accuracy of the stress resultants obtained by using these methods is uncertain.

In this paper, a least-squares-based finite difference method (LSFD) is proposed to obtain not only accurate
frequencies and mode shapes, but also accurate modal stress resultants for the completely free vibrating plates
based on the classical thin-plate theory. Sample results are given for circular plates, elliptical plates, lifting-tab
shaped plates and 451 right triangular plates. Other than the Galerkin’s method, the Ritz method and the
finite-element method which solve the weak form of system equations, LSFD is a meshfree method which
solves the strong form of system equations. Using LSFD, the derivatives of a function in the governing
differential equation (PDE) and the PDEs for boundary conditions are directly discretized so that a system of
algebraic equations can be derived and then solved by using a common solver. Therefore, in this solution
procedure, the natural boundary conditions are imposed and therefore are satisfied a priori, and one can be
sure that a well-converged solution is accurate. The second advantage of LSFD method, when comparing with
the traditional finite-difference method (FDM) and differential quadrature method (DQM), is that problems
with generally shaped two-dimensional (2D) domains can be easily solved by utilizing randomly distributed
points in the domains, without any complexity of coordinate transformation or domain decomposition.

In the classical thin plate theory, the governing equation for free vibration of plates is a fourth-order
PDE and the boundary conditions for free edges are given by one second-order and one third-order PDEs.
It is a challenging task to solve high-order PDEs with multiple boundary conditions by using numerical
methods. The difficulties mainly lie in the accurate approximation of high-order derivatives and the
effective implementation of multiple boundary conditions. In the present study, these difficulties are overcome
by using a chain rule of discretization. For example, a fourth-order derivative can be expressed as a second-
order derivative of another second-order derivative of the function, such as q4W=qx4 ¼ q2ðq2W=qx2Þ=qx2,
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then it can be discretized in two or three steps where the order of derivatives is reduced gradually. This is
done with the view to obtain sufficient accuracy for discretization of the high-order derivatives in the
PDEs.

By using LSFD method, the multiple boundary conditions are implemented by solving the system of
discretized equations of boundary conditions, and expressing the function values at boundary points and a
layer of interior points near the boundary in terms of the function values at other interior points. The final
eigenvalue equations are derived by substituting above expressions into the fully discretized governing
equations. The validity of LSFD method is confirmed by comparing the LSFD results with available data in
the literature, by the convergence study of the LSFD results, by assessing the satisfaction of the natural
boundary conditions and by the smoothness of the stress resultant distributions. In the selection of plate
problems for this purpose, we chose circular and elliptical plates because (a) there are exact analytical
solutions for natural frequencies of circular plates which form a reference to assess the performance of the
LFSD method and (b) circular and elliptical plates are common plate shapes which engineers would like to use
for VLFSs. We also choose a lifting-tab shaped plate (a shape crafted by the authors to represent an arbitrarily
shaped plate) and a 451 right triangular plate to demonstrate the capability of the LSFD method in solving
problems with complex domain shapes. Owing to length limitation, we shall only present LFSD results for the
stress resultant distributions for the fundamental vibration mode of each plate shape. These results should
serve as important data for the engineers in their development of software package for the hydroelastic
analysis of VLFSs.
2. Least squares-based finite difference (LSFD) method

2.1. Basic LSFD formulations

In this section, a summary of the methodology of LSFD method is presented. The detailed description of
the method was earlier given by Ding et al. [20].

For a continuous, differentiable function W(x,y) in a 2D domain, in which a set of points with indices
i ¼ 1; . . . ;N t are distributed randomly, the Taylor series expansion in D-form gives:

DW ij ¼ Dxij
qW i

qx
þ Dyij

qW i

qy
þ

Dx2
ij

2

q2W i

qx2
þ

Dy2
ij

2

q2W i

qy2
þ DxijDyij

q2W i

qxqy

þ
Dx3

ij

6

q3W i

qx3
þ

Dy3
ij

6

q3W i

qy3
þ

Dx2
ijDyij

2

q3W i

qx2qy
þ

DxijDy2
ij

2

q3W i

qxqy2
þO D4

� �
, (1)

where DW ij ¼W ij �W i; Dxij ¼ xij � xi; Dyij ¼ yij � yi; ðxi; yiÞ are the coordinates of the point i, (xij, yij) the
coordinates of a neighboring point ij (hereafter we call it a supporting point) of the point i, Wi the function
value at the point i, Wij the function value at the point ij, qW i=qx and qW i=qy, etc. the derivative values of
function W(x, y) evaluated at the point i. D in the truncation error term, O(D4), is a measurement of the mean
distance from the set of supporting points ij to the point i, for j ¼ 1,2,y,m.

If we apply Eq. (1) to approximate function values Wij at a number of supporting points ij (j ¼ 1,2,y,m;
m49) of the point i, and drop the truncation errors O(D4), we can have a system of equations in a compact
form:

DWi ¼ Si dWi, (2)

where

DWi ¼ DW i1 DW i2 � � � DW im

� �T
, (3)

dWi ¼
qWi
qx

qW i
qy

q2W i

qx2
q2W i

qy2
q2Wi
qxqy

q3Wi

qx3
q3W i

qy3
q3W i

qx2qy

q3W i

qxqy2

� �T
, (4)
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Si ¼
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. (5)

Now, we define a matrix

Di ¼ diag di; di; d
2
i ; d

2
i ; d

2
i ; d

3
i ; d

3
i ; d

3
i ; d

3
i

� �
, (6)

where di is the radius of the supporting region of the point i, then from Eq. (2) we have

DWi ¼ S̄i dW̄i, (7)

where

S̄i ¼ SiD
�1
i ; dW̄i ¼ Di dWi. (8)

In Eq. (7), the number of equations is greater than the number of unknowns (i.e. the derivatives given in
expression (4)), i.e. m49. This is done purposely because the matrices Si are often singular or ill-conditioned
at some points i in the domain O when m ¼ 9. We can use the least-squares technique to solve for dW̄i from
Eq. (7). That is, pre-multiplying the matrix S̄

T

i to the two sides of Eq. (7), we have

S̄
T

i DWi ¼ S̄
T

i S̄i dW̄i. (9)

The dimensions of matrices S̄i and S̄
T

i are m� 9 and 9�m, respectively, hence the dimension of matrix S̄
T

i S̄i is
9� 9. m is taken big enough to ensure the matrices S̄

T

i S̄i are non-singular at all points i in O. Therefore, from
Eq. (9), we get

dW̄i ¼ S̄
T

i S̄i

� ��1
S̄
T

i DWi. (10)

Moreover, in order to reflect the fact that a supporting point closer to the node i has more influence on the
function value at the node i, a weighting function matrix is introduced in Eq. (10) so that

dW̄i ¼ S̄
T

i ViS̄i

� ��1
S̄
T

i ViDWi, (11)

where

Vi ¼ diag Vi1;V i2; � � � ;Vimð Þ (12)

in which the weighting functions are taken as

V ij ¼
ffiffiffiffiffiffiffiffi
4=p

p
1� r̄2ij

� �4
(13)

and

r̄ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2

ij þ Dy2
ij

q
=di.

The final LSFD formulations can be derived from Eqs. (8) and (11) as

dWi ¼ D�1i S̄
T

i ViS̄i

� ��1
S̄
T

i ViDWi. (14)

In order to simplify this formulation, we can define matrices, each of which is associated with a point i, as

Ti ¼ D�1i S̄
T

i ViS̄i

� ��1
S̄
T

i Vi

� �
, (15)

then formulation (14) can be simply rewritten as

dWi ¼ TiDWi, (F-9)
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where DWi and dWi are vectors given by expressions (3) and (4), respectively, and TiAR9�m. Eq. (F-9) shows
that a derivative of the function W(x,y) at a point i can be approximated by a linear combination of the
function values at the point i and a set of its supporting points ij.

From above process, it is seen that the LSFD formulation (F-9) is derived by using the 2D Taylor series
expansion with first nine truncated terms. We can also derive higher-order LSFD schemes which approximate
derivatives of a function with higher accuracy by using the 2D Taylor series expansions with more truncated
terms. For convenience of citation, we denote by (F-N) the LSFD formulation, in the same form as (F-9),
which is derived by using the 2D Taylor series expansion with first N truncated terms.

2.2. LSFD formulations for derivative approximation at boundary in terms of local nt-coordinate system

If the boundary conditions are given in terms of the derivatives of function to n and/or t, where n, t are the
local coordinates along the outer normal and tangential directions, respectively, at the boundary C (see Fig. 1),
eg qW/qn ¼ 0 at C, then we can use LSFD method to derive the formulations to approximate the derivatives
of function in n- and t-local directions at a boundary point. The use of these formulations to discretize
the PDEs for boundary conditions is more convenient than that of (F-N) which is in terms of global
xy-coordinates.

The procedure for deriving such formulations is similar to that of Eqs. (1)–(F-9). At a boundary point i with
the local nt-coordinate system (see Fig. 1) and supporting points ijðj ¼ 1,2,y,m; and m49Þ, the Taylor series
expansion can be written as

DW ij ¼ Dnij

qW i

qn
þ Dtij

qW i

qt
þ

Dn2
ij

2

q2W i
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þ
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2

q2W i
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þ DnijDtij

q2W i
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þ
Dn3

ij

6

q3W i
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þ

Dt3ij

6

q3W i
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þ

Dn2
ijDtij

2

q3W i

qn2qt
þ

DnijDt2ij

2

q3W i

qnqt2
þO D4

� �
, (16)

where

DW ij ¼W ij �W i, (17)

Dnij ¼ nij � ni ¼ Dxij cos yi þ Dyij sin yi;

Dtij ¼ tij � ti ¼ �Dxij sin yi þ Dyij cos yi:

(
(18)

The relations given by Eq. (18) can be easily verified from Fig. 1.
After a similar process, we can arrive at

dWi ¼ ~T
i
DWi, (F-9a)
t

o x

ij

i

θi

n

y

∆nij

∆yij

∆tij ∆xij

Fig. 1. Local nt-coordinate system.



ARTICLE IN PRESS
W.X. Wu et al. / Journal of Sound and Vibration 297 (2006) 704–726 709
where

dWi ¼
qWi
qn

qW i
qt

q2W i

qn2
q2W i

qt2
q2W i
qnqt

q3Wi

qn3
q3W i

qt3
q3W i
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q3W i
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h iT
, (19)

DWi ¼ DW i1 DW i2 � � � DW im

� �T
, (20)

~T
i
¼ D�1i S̄

T

i ViS̄i

� ��1
S̄
T

i Vi

� �
~T

i
2 R9�m, (21)
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. (22)

The matrices Di, S̄i and Vi are in the same forms as those given in Eqs. (6), (8) and (12), respectively.
Analogous to the notation (F-N), we use (F-Na) to denote the derivative approximating formulation in the
same form as (F-9a) but derived by using the 2D Taylor series expansion with first N truncated terms.
2.3. LSFD formulations for r2Wi and r2(r2Wi)—chain rule of discretization

In view of the Laplacian operator in a dimensionless form

r2 ¼
q2

qX 2
þ

q2

qY 2
(23)

and using formulation (F-N), we can derive following discretization:

r2W i ¼
Xm

j¼1

Ti
3;j þ Ti

4;j

� �
DW ij ¼

Xm

j¼1

Ti
3;j þ Ti

4;j

� �
W ij þ �

Xm

j¼1

Ti
3;j þ Ti

4;j

� �( )
W i. (24)

We define a vector ci which is associated with point i by giving its elements as

ci
j ¼ Ti

3;j þ Ti
4;j for j ¼ 1; 2; � � � ;m (25)

then Eq. (24) can be simplified as

r2W i ¼
Xm

j¼1

ci
jDW ij ¼

Xm

j¼1

ci
jW ij þ �

Xm

j¼1

ci
j

 !
W i. (26)

Based on the classical thin plate theory, the governing equation for the free vibration of a plate is given
by [21]

r2 r2W
� �

¼ O2W . (27)

We can treat r2Wi as the value of a function at point (xi,yi). Following Eq. (26), we can derive

r2 r2W i

� �
¼
Xm

j¼1

ci
jr

2W ij þ �
Xm

j¼1

ci
j

 !
r2W i (28-1)
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¼
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j

 !
W i
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¼
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ij
kW ijk þ
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j �
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k¼1

c
ij
k

 !
W ij þ �

Xm

j¼1

ci
j

 !Xm
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jW ij þ �

Xm

j¼1

ci
j

 !2

W i, (28-2)

where Wijk is to be understood as the function value at the point ijk, and the subscript ijk refers to the index of
the kth supporting point of the point ij. So the fully descritized form of Eq. (27) can be written as

Xm

j¼1

Xm

k¼1

ci
jc

ij
kW ijk þ

Xm

j¼1

ci
j �

Xm

k¼1

c
ij
k

 !
W ij þ �

Xm

j¼1

ci
j

 !Xm

j¼1

ci
jW ij þ �

Xm

j¼1

ci
j

 !2

W i ¼ O2W i. (29)
3. Free vibration analysis of completely free plates

3.1. Problem definition

The governing equation of a thin isotropic plate undergoing harmonic free vibration is given in Eq. (27), in
which W ¼W(X,Y) is the mode function of plate deflection; X ¼ x/a,Y ¼ y/a are dimensionless Cartesian
coordinates in the plane of the mid-surface of the plate; a is a characteristic dimension of the plate in the xy-
plane. O is the frequency parameter of a principal mode of plate vibration and is related to the angular
frequency o(rad/s) in the form

O ¼ oa2

ffiffiffiffiffiffi
rh

D

r
, (30)

where r is the density of the plate material, h the plate thickness; and

D ¼
Eh3

12 1� n2ð Þ
(31)

the flexural rigidity of the plate; E and v being, respectively, Young’s modulus and Poisson’s ratio of the plate
material.

The boundary conditions for a free edge are given by [21]

q2W

qn2
þ n

q2W

qt2
¼ 0, (32a)

q
qn
r2W
� �

þ 1� nð Þ
q
qs

q2W

qnqt


 �
¼ 0. (32b)

In Eq. (32b), q=qs denotes the differentiation along the boundary curve. For a straight boundary line,
q=qs ¼ q=qt. Physically, Eq. (32a) implies that the normal bending moment at a free edge is equal to zero,
while Eq. (32b) implies that the normal effective shear force at a free edge is zero.

Apart from the accurate results for frequency parameters and mode shapes, we shall also obtain the
accurate results for stress resultants in the completely free vibrating plates. The stress resultants are computed
by using following formulations [21]:

Mx ¼ �D
q2W

qx2
þ v

q2W
qy2


 �
My ¼ �D

q2W
qy2
þ v

q2W

qx2


 �
, (33a)

Mxy ¼ D 1� vð Þ
q2W
qxqy

, (33b)
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Qx ¼ �D
q
qx
r2W
� �

Qy ¼ �D
q
qy
r2W
� �

, (33c)

Vn ¼ Qn �
qMnt

qs
, (33d)

Mx0 ¼Mx cos
2 aþMy sin

2 a� 2Mxy sin a cos a, (33e)

Mx0y0 ¼Mxy cos2 a� sin2 a
� �

þ Mx �My

� �
sin a cos a, (33f)

Qx0 ¼ Qx cos aþQy sin a. (33g)

x0 denotes the direction which makes an angle a with x-axis. By setting qMx0/qa ¼ 0, we get

a1 ¼
1

2
arctan

2Mxy

�Mx þMy

a2 ¼
1

2
arctan

2Mxy

�Mx þMy

þ
p
2
. (34a)

By back substituting Eq. (34a) into Eq. (33e), we obtain the principal bending moments at a point of
interest. By setting qMx0y0/qa ¼ 0, we get

a3 ¼
1

2
arctan

Mx �My

2Mxy

a4 ¼
1

2
arctan

Mx �My

2Mxy

þ
p
2
. (34b)

The back-substitution of Eq. (34b) into Eq. (33f) furnishes the maximum and minimum twisting moments at
a point of interest. By setting qQx0/qa ¼ 0, we get

a5 ¼ arctan
Qy

Qx

. (34c)

The back -substitution of Eq. (34c) into Eq. (33g) yields the maximum absolute shear forces at a point of
interest.
3.2. Numerical implementation

3.2.1. Data preparation

In the plate domain, totally Nt nodal points xi; yi

� �
; i ¼ 1; 2; � � � ;N t are generated randomly, in which

i ¼ 1,2,y,Nii are interior points in the central area of the plate domain, N i �N iið Þ � Nb points i ¼

N ii þ 1;N ii þ 2; � � � ;N i are a layer of interior points near the plate edge, and the rest N t �N ið Þ � Nb points
i ¼ N i þ 1;N i þ 2; � � � ;N t are boundary points. The data yi for boundary points are also given where yi is the
angle between the positive x-axis and the positive local n-axis at the boundary point i.

Based on the given data, we generate another datafile in which the global indices of m nearest supporting
points of each node i (i ¼ 1; 2; � � � ;Nt) are given as ij i; jð Þ, j ¼ 1; 2; � � � ;m. The radius di of the supporting region
associated to each point i is calculated as

di ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xij � xi

� �2
þ yij � yi

� �2r( )
� 1:2; for j ¼ 1; 2; � � � ;m; and i ¼ 1; 2; � � � ;Nt. (35)

The matrices Ti, vectors ci (i ¼ 1; 2; � � � ;Nt) and matrices ~T
i
(i ¼ N i þ 1; � � � ;N t) are calculated by using

Eqs. (15), (25) and (21), respectively.
3.2.2. Discretization of governing equation

As stated in Section 2.3, the governing equation is given by Eq. (27). At each interior point i, where
i ¼ 1; 2; � � � ;N ii, the left-hand side of Eq. (27) can be discretized in two steps as shown in Eqs. (28-1) and
(28-2). Finally, the fully discretized form of Eq. (27) can be written as Eq. (29).
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3.2.3. Implementation of free edge boundary conditions

Eq. (32a) for one boundary condition on the free edge can be easily discretized at all the boundary points
i ¼ N i þ 1;N i þ 2; � � � ;Nt by using the formulation (F-Na) as

Xm

j¼1

~T
i

3;j þ n ~T
i

4;j

� �
W ij �W i

� �
¼ 0 (36a)

and Eq. (32b) for another boundary condition on the free edge can be firstly reduced to the form

q
qn
r2W
� �

þ 1� nð Þ
q
qs

cos 2y
q2W

qXqY
þ

1

2
sin 2y

q2W

qY 2
�

q2W

qX 2


 �� �
¼ 0 (a)

which can be further reduced, by performing the differentiation q/qs of the expression in the square
brackets, as

q
qn
r2W i þ 1� nð Þ

q2W i

qt2

� �

þ 1� vð Þ
qyi

qs
�2 sin 2yi

q2W i

qXqY
þ cos 2yi

q2W i

qY 2
�

q2W i

qX 2


 �� �
¼ 0. (b)

Eq. (b) is now written as an equation satisfied at a boundary point i. Note that the second term of Eq. (b)
relates to the curvature of a curved free edge and vanishes for a straight free edge. Eq. (b) can be further
discretized as

Xm

j¼1

~T
i

1;j r
2W ij þ 1� nð Þ

q2W ij

qt2

" #
þ �

Xm

j¼1

~T
i

1;j

 !
r2W i þ 1� nð Þ

q2W i

qt2

� �

þ 1� vð Þ
qyi

qs
�2 sin 2yi

q2W i

qXqY
þ cos 2yi

q2W i

qY 2
�

q2W i

qX 2


 �� �
¼ 0. (c)

The final discretized form of Eq. (32b) can be derived from Eq. (c) as

Xm

j¼1

Xm

k¼1

~T
i

1;j c
ij
k þ 1� nð Þ sin2yi � T

ij
3;k þ cos2yi � T

ij
4;k � sin 2yi � T

ij
5;k

� �h i
W ijk �W ij

� �

þ �
Xm

j¼1

~T
i

1;j

 !Xm

j¼1

ci
j þ 1� nð Þ ~T

i

4;j

h i
W ij �W i

� �

þ
1� vð Þ

ri

Xm

j¼1

�2 sin 2yi � T
i
5;j þ cos 2yi � Ti

4;j � Ti
3;j

� �h i
W ij �W i

� �
¼ 0. (36b)

In Eq. (36b), ri ¼ 1
�

qyi=qs
� �

is the radius of curvature of the curved free edge at the boundary point i.
Eqs. (36a,b) derived at all the boundary points form an algebraic equation system in which the function

values at all discrete points in the domain are taken as unknowns. By remaining the terms involving the
function values at all the boundary points and the same number (Nb) of interior points in the neighborhood of
the boundary at the left-hand side, and moving all the terms involving the function values at other interior
points to the right-hand side, this equation system can be written in a compact form as

Bb ¼ Ca, (37)

where a ¼ W 1 � � � W Nii

 �T
, b ¼ W Niiþ1 � � � W Ni

W Niþ1 � � �W Nt

 �T
. The coefficient matrices B and C

are of dimensions 2Nb�Nb and 2Nb�Nii, respectively. Eq. (37) can be further reduced as

b ¼ B�1C
� �

a. (38)
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By substituting Eq. (38) in the fully discretized governing equation (29) which is derived at the interior
points i ¼ 1; � � � ;Nii, an equation system can be arrived:

Aa ¼ O2a. (39)

the coefficient matrix A is of the dimension Nii�Nii. The frequency parameters O and corresponding mode
shapes a and b can be derived by calculating the eigenvalues and eigenvectors of the matrix A and by using
Eq. (38).

3.3. Results and discussion

The results presented in this section are aimed to illustrate the numerical accuracy and efficiency of the
LSFD method in solving high-order PDEs with multiple boundary conditions. The problem chosen for this
purpose is the free vibration of completely free plates including circular and elliptical plates of size 2a� 2b,
lifting-tab shaped plates and 451 right triangular plates (see Fig. 2). Although the circular plate problem can be
solved by using the cylindrical coordinate system, the present formulation and computation are based on the
Cartesian coordinate system. In order to show the accuracy of the LSFD solutions, following studies have
been carried out: (1) convergence study of the LSFD solutions; (2) comparison studies on the frequency
parameters and nodal circle radii obtained using the LSFD solutions with existing data in the literature; (3)
assessment on the satisfaction of the natural boundary conditions by the LSFD solutions. Finally, we present
the complete set of LSFD results for the mode shapes and stress resultants for the fundamental modes of the
considered completely free plates in 3D and contour plots.

3.3.1. Vibration frequencies

The first three modes of these completely free plates correspond to rigid motions. Therefore, we present the
numerical results from the 4th mode onwards. LSFD results for frequency parameters of the circular and
elliptical plates are given in Table 1. The results, obtained using three mesh sizes, show clearly the convergence
behavior of the solution method when the mesh size is increased. For each mesh size, the LSFD formulations
(F-N) and (F-Na) with N ¼ 14, 20, 27 and 35 are used in computation. Therefore, the results demonstrate how
the accuracy is affected by the derivative approximating formulations for different orders of LSFD schemes. It
can be observed that the accuracy of LSFD results is generally improving when the mesh size increases and
when the higher-order LSFD formulations are used. Table 1 shows the LSFD solutions for the first six
frequency parameters of the completely free circular and elliptical plates, which are in very good agreement
with the benchmark data from Lam et al. [7] and other sources.

LSFD results for the first six frequency parameters of the completely free lifting-tab shaped plate and 451
right triangular plate are given in Tables 2 and 3, respectively. For each case, the results are also obtained
using three mesh sizes so as to show the convergence behavior of the solution method when the mesh size is
increased. For each mesh size, the LSFD formulations (F-N) and (F-Na) with N ¼ 14, 20 and 27 are used in
computation. This is done because we have observed that the results in Table 1 for circular and elliptical plates
E

F

D
b

C

B

a+b

a

A

(a)
a

a

A
B

C

(b)

Fig. 2. (a) Lifting-tab shaped plate (a ¼ 2b); (b) 451 right triangular plate.
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Table 1

LSFD solution for the first six frequencies of completely free circular and elliptic plates (O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, v ¼ 0.3)

Method Mesh Formulation Mode sequence

4th 5th 6th 7th 8th 9th

Circular plate, a/b ¼ 1.0

LSFD 406 F-14 4.9367 4.9537 8.3257 11.169 11.234 17.659

F-20 5.3261 5.3301 9.0514 12.092 12.121 20.487

F-27 5.3631 5.3636 9.0168 12.441 12.454 20.733

F-35 5.3569 5.3575 8.9809 12.541 12.544 21.043

1490 F-14 5.2320 5.2357 8.8757 12.021 12.033 19.760

F-20 5.3579 5.3582 9.0032 12.393 12.400 20.498

F-27 5.3584 5.3584 9.0031 12.438 12.441 20.478

F-35 5.3584 5.3584 9.0001 12.436 12.436 20.463

2468 F-14 5.2802 5.2802 8.9394 12.170 12.170 20.067

F-20 5.3587 5.3587 9.0022 12.419 12.420 20.485

F-27 5.3583 5.3583 9.0030 12.439 12.440 20.473

F-35 5.3584 5.3584 9.0021 12.438 12.438 20.471

Lam et al. [7] 5.3583 5.3583 9.0732 12.439 12.439 20.521

Sato [4] 5.3592 5.3592 9.0120 — — —

Narita [5] 5.3583 5.3583 9.0031 12.439 12.439 20.475

Elliptic plate, a/b ¼ 2.0

LSFD 557 F-14 6.4458 9.9660 15.923 20.435 24.678 29.176

F-20 6.6637 10.499 16.863 21.801 27.756 31.282

F-27 6.6708 10.542 16.882 22.016 27.731 31.572

F-35 6.6694 10.542 16.955 22.030 27.727 32.062

1519 F-14 6.5993 10.321 16.604 21.356 26.656 30.692

F-20 6.6687 10.536 16.910 21.967 27.778 31.478

F-27 6.6705 10.547 16.918 22.011 27.772 31.505

F-35 6.6705 10.547 16.922 22.015 27.758 31.538

2504 F-14 6.6272 10.413 16.729 21.620 27.058 31.004

F-20 6.6698 10.543 16.917 21.996 27.772 31.497

F-27 6.6712 10.548 16.921 22.023 27.796 31.559

F-35 6.6705 10.547 16.922 22.015 27.765 31.521

Lam et al. [7] 6.6704 10.548 16.923 22.021 27.777 31.523

Sato [4] 6.6667 — — — 27.773 31.517

Narita [5] 6.6705 10.548 16.921 22.015 27.768 31.513

Table 2

LSFD solution for the first six frequencies of the completely free lifting-tab shaped plate (O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, v ¼ 0.3)

Method Mesh Formulation Mode sequence

4th 5th 6th 7th 8th 9th

LSFD 1100 F-14 2.8132 3.8245 6.3050 7.9499 8.4411 11.966

F-20 2.8493 3.9242 6.5292 8.2420 8.6937 12.455

F-27 2.8425 3.9151 6.5299 8.2272 8.6916 12.512

2067 F-14 2.8231 3.8600 6.3992 8.0440 8.5616 12.183

F-20 2.8382 3.9061 6.5154 8.1908 8.6817 12.448

F-27 2.8343 3.8974 6.5056 8.1680 8.6779 12.458

3196 F-14 2.8307 3.8807 6.4375 8.1184 8.6079 12.281

F-20 2.8361 3.9091 6.5084 8.2008 8.6764 12.440

F-27 2.8306 3.9082 6.5045 8.1902 8.6772 12.438

W.X. Wu et al. / Journal of Sound and Vibration 297 (2006) 704–726714
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Table 3

LSFD solution for the first six frequencies of the completely free 451 right triangular plate (O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, v ¼ 0.3)

Method Mesh Formulation Mode sequence

4th 5th 6th 7th 8th 9th

LSFD 1100 F-14 17.077 26.667 45.076 46.332 68.076 80.949

F-20 17.846 27.316 44.637 46.934 65.769 80.593

F-27 18.639 28.502 45.160 48.403 69.046 82.199

2662 F-14 17.743 27.392 45.403 46.832 68.016 81.135

F-20 18.317 28.018 45.051 47.672 67.359 81.203

F-27 18.841 28.805 45.350 48.900 70.640 83.100

3563 F-14 18.029 27.751 45.300 47.176 68.084 81.318

F-20 18.570 28.387 45.187 48.218 68.679 81.955

F-27 18.777 28.724 45.352 48.808 70.268 83.018

Relative frequency ratios

LSFD 3563 F-27 1 1.53 2.42 2.60 3.74 4.42

Leissa [3] 1 1.4 2.36 2.56 3.65 4.39

Table 4

Radii of nodal circles r ¼ r/a for a completely free circular plate (v ¼ 0.33)

Sources r for values of (n, s)� of

(0, 1) (1, 1) (2, 1) (0, 2) (3, 1)

LSFD 0.6794 0.7807 0.8223 0.8406, 0.3904 0.8463

Leissa [3] 0.680 0.781 0.822 0.841, 0.391 0.847

�n is the number of nodal diameters, s is the number of nodal circles.
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have very high accuracy when N ¼ 27. It should be pointed out that the comparison study cannot be
performed for the results of lifting-tab shaped plate as there are no exisiting data. In Table 3, the LSFD results
for frequency parameters of the 451 right triangular plate are compared with experimentally obtained relative
frequency ratios given in Leissa’s book [3]. It can be seen that the agreement between the two sets of results is
satisfactory. Note that for these two aforementioned plate shapes, the high accuracy of the LSFD results can
be confirmed by the convergence behavior of the frequency values as shown in Tables 2 and 3. These two case
studies demonstrate the capability of the LSFD method in solving PDEs with complex domains.

3.3.2. Mode shapes and modal stress resultants

The modal stress resultants for circular, elliptical, lifting-tab shaped and 451 right triangular plates are
non-dimensionalized as follows: (1) in the plate domain, M̄x0 ¼Mx0a=D, M̄y0 ¼My0a=D for the principal
bending moments, M̄x00y00 ¼Mx00y00a=D for the maximum twisting moments, Q̄x000 ¼ Qx000

�� ��a2
�

D for the
maximum absolute values of shear forces, and (2) at the plate edge, M̄n ¼Mna=D and V̄n ¼ Vna2

�
D for

the normal bending moments and effective shear forces. All quantities are also normalized by setting
W̄max ¼ Wmax=a

�� �� ¼ 1.
Table 4 shows the LSFD results for the radii of nodal circles of the five modes (n ¼ 0, s ¼ 1), (n ¼ 1, s ¼ 1),

(n ¼ 2, s ¼ 1), (n ¼ 0, s ¼ 2) and (n ¼ 3, s ¼ 1) of the completely free circular plate, and they are compared
with the benchmark data from Leissa [3]. The agreement between the two results is excellent.

The satisfaction of the boundary conditions M̄n ¼ 0 and V̄n ¼ 0 by LSFD solutions for the first four
unrepeated modes, i.e., the 4th, 6th, 7th and 9th modes of the completely free circular plate, and the 4th to 7th
modes of the completely free elliptical plate, lifting-tab shaped plate and 451 right triangular plate are
examined by referring to Figs. 3–6 and Tables 5–8. Here we use Figs. 3–6 to show the error distributions of M̄n



ARTICLE IN PRESS

3E-09

2E-09

1E-09

-1E-09

-2E-09

-3E-09
0

0

90 180 270 360

θ (degree) θ (degree)

0 90 180 270 360

4E-07

3E-07

2E-07

1E-07

-1E-07

-2E-07

-3E-07

-4E-07

0V
n

M
n

(a) (b)

Fig. 3. Verification of natural boundary conditions M̄n ¼ 0, V̄ n ¼ 0 for completely free circular plate vibrating in 4th mode.

3E-08

2E-08

1E-08

-1E-08

-2E-08

-3E-08

0

0 90 180 270 360 0 90 180 270 360

θ (degree) θ (degree)

8E-06

6E-06

4E-06

2E-06

-2E-06

-4E-06

-6E-06

-8E-06

0M
n

V
n

(a) (b)

Fig. 4. Verification of boundary conditions M̄n ¼ 0, V̄ n ¼ 0 for completely free elliptical plate (a/b ¼ 2) vibrating in 4th mode.
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Fig. 5. Verification of boundary conditions M̄n ¼ 0, V̄n ¼ 0 for completely free lifting-tab shaped plate vibrating in 4th mode.
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and V̄ n along the perimeter of the circular, elliptical, lifting-tab shaped and 451 right triangular plates,
respectively, which are associated with the 4th mode. For the other three modes of these plates, the error
distributions of M̄n and V̄ n are similar to Figs. 3–6. It can be seen that the absolute errors and the relative
errors (the values (a)/(b) in Table 5) of M̄n for the given four modes of the completely free circular plate are in
the orders of 10�9 and 10�10, respectively; and the absolute errors and the relative errors (the values (c)/(d) in
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Fig. 6. Verification of boundary conditions M̄n ¼ 0, V̄ n ¼ 0 for completely free 451 right triangular plate vibrating in 4th mode.

Table 5

Verification of boundary conditions M̄n ¼ 0 and V̄n ¼ 0 of the completely free circular plate (v ¼ 0.3)

Mode M̄n

�� ��
max

(a) M̄x0
�� ��

max
(b) (a)/(b) V̄n

�� ��
max

(c) Q̄x000

�� ��
max

(d) (c)/(d)

4th 2:2042� 10�9 2.2451 9:82� 10�10 2:9302� 10�7 4.2350 6:92� 10�8

6th 1:7963� 10�9 6.9502 2:58� 10�10 2:5015� 10�7 14.102 1:77� 10�8

7th 2:0890� 10�9 6.2950 3:32� 10�10 2:7744� 10�7 17.329 1:60� 10�8

9th 9:5366� 10�10 17.826 5:35� 10�11 9:7671� 10�8 84.775 1:20� 10�9

Table 6

Verification of boundary conditions M̄n ¼ 0 and V̄n ¼ 0 of the completely free elliptical plate (a/b ¼ 2, v ¼ 0.3)

Mode M̄n

�� ��
max

(a) M̄x0
�� ��

max
(b) (a)/(b) V̄ n

�� ��
max

(c) Q̄x000

�� ��
max

(d) (c)/(d)

4th 2:8835� 10�8 3.4342 8:40� 10�9 5:9902� 10�6 5.4731 1:09� 10�6

5th 5:1041� 10�8 4.3197 1:18� 10�8 9:4995� 10�6 12.293 7:72� 10�7

6th 2:4701� 10�8 7.6476 3:23� 10�9 5:2286� 10�6 25.754 2:03� 10�7

7th 4:2264� 10�8 11.336 3:73� 10�9 8:5711� 10�6 38.523 2:22� 10�7

Table 7

Verification of boundary conditions M̄n ¼ 0 and V̄n ¼ 0 of the completely free lifting-tab shaped plate (Fig. 2 Left, v ¼ 0.3)

Mode M̄n

�� ��
max

(a) M̄x0
�� ��

max
(b) (a)/(b) V̄ n

�� ��
max

(c) Q̄x000

�� ��
max

(d) (c)/(d)

4th 3:2343� 10�3 1.3736 2:35� 10�3 2:5148� 10�5 1.4399 1:75� 10�5

5th 3:8864� 10�2 1.8244 2:13� 10�2 1:5011� 10�3 2.9322 5:12� 10�4

6th 5:4933� 10�2 3.2768 1:68� 10�2 1:1194� 10�3 6.1270 1:83� 10�4

7th 1:2546� 10�1 3.9402 3:18� 10�2 2:6513� 10�3 8.4088 3:15� 10�4
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Table 5) of V̄ n are in the orders of 10�7 and 10�8, respectively. For the completely free elliptical plate, the
absolute errors and the relative errors (the values (a)/(b) in Table 6) of M̄n for the given four modes are in the
orders of 10�8 and 10�9, respectively. The absolute errors and relative errors (the values (c)/(d) in Table 6) of
V̄ n are in the orders of 10�6 and 10�7, respectively. These errors are so small that we can think of the
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satisfaction of the LSFD solutions to the free edge natural boundary conditions M̄n ¼ 0 and V̄n ¼ 0 as
excellent. In sum, the LSFD solutions for the circular and elliptical plates are accurate and the modal stress
resultants do satisfy the natural boundary conditions.

On the other hand, we find that the satisfaction of natural boundary conditions by the LSFD results for the
lifting-tab shaped and 451 right triangular plates is not as good as that for the circular and elliptical plates.
From Figs. 5 and 6, it is found that the errors of M̄n and V̄ n pulsate at the vicinity of the four tangent points
(denoted by letters B, C, E and F in Fig. 2a and in Fig. 5) on the edge curve of the lifting-tab shaped plate, and
at the vicinity of the three corner vertices (denoted by letters A, B and C in Fig. 2b and Fig. 6) of the triangular
plate. The amplitudes of these absolute and relative errors shown in Figs. 5 and 6 and Tables 7 and 8 can be
regarded as small in engineering practices. Moreover, the natural boundary conditions are still strictly satisfied
Table 8

Verification of boundary conditions M̄n ¼ 0 and V̄n ¼ 0 of the completely free 451 right triangular plate (Fig. 2 Right, v ¼ 0.3)

Mode M̄n

�� ��
max

(a) M̄x0
�� ��

max
(b) (a)/(b) V̄n

�� ��
max

(c) Q̄x000

�� ��
max

(d) (c)/(d)

4th 3:1690� 10�2 8.2285 3:85� 10�3 2:7923� 10�3 16.149 1:73� 10�4

5th 7:9603� 10�2 11.334 7:02� 10�3 2:0756� 10�2 45.676 4:54� 10�4

6th 1:2427� 10�1 9.9135 1:25� 10�2 5:2472� 10�3 64.528 8:13� 10�5

7th 2:5993� 10�1 25.337 1:03� 10�2 3:4359� 10�3 117.97 2:91� 10�5

Fig. 7. Modal deflections W̄ for circular plate vibrating in 4th mode.

Fig. 8. First principal modal bending moments M̄x0 for circular plate vibrating in 4th mode.
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Fig. 11. Maximum modal shear forces Q̄x000 for circular plate vibrating in 4th mode.

Fig. 10. Maximum modal twisting moments M̄x00y00 for circular plate vibrating in 4th mode.

Fig. 9. Second principal modal bending moments M̄y0 for circular plate vibrating in 4th mode.
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along a major portion of the plate edges. In sum, the numerical vibration characteristics of these two plates are
actually not contaminated by these localized errors with small amplitudes.

The mode shapes and modal stress resultants for the fundamental modes of these four plates are presented
in Figs. 7–26 in the forms of 3D displays and contour plots. Very good smoothness in the distributions of the
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Fig. 13. First principal modal bending moments M̄x0 for elliptical plate (a/b ¼ 2) vibrating in 4th mode.

Fig. 12. Modal deflections W̄ for elliptical plate (a/b ¼ 2) vibrating in 4th mode.

Fig. 15. Maximum modal twisting moments M̄x00y00 for elliptical plate (a/b ¼ 2) vibrating in 4th mode.

Fig. 14. Second principal modal bending moments M̄y0 for elliptical plate (a/b ¼ 2) vibrating in 4th mode.

W.X. Wu et al. / Journal of Sound and Vibration 297 (2006) 704–726720
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Fig. 16. Maximum modal shear forces Q̄x000 for elliptical plate (a/b ¼ 2) vibrating in 4th mode.

Fig. 17. Modal deflections W̄ for lifting-tab shaped plate vibrating in 4th mode.

Fig. 18. First principal modal bending moments M̄x0 for lifting-tab shaped plate vibrating in 4th mode.

Fig. 19. Second principal modal bending moments M̄y0 for lifting-tab shaped plate vibrating in 4th mode.

W.X. Wu et al. / Journal of Sound and Vibration 297 (2006) 704–726 721
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Fig. 20. Maximum modal twisting moments M̄x00y00 for lifting-tab shaped plate vibrating in 4th mode.

Fig. 21. Maximum modal shear forces Q̄x000 for lifting-tab shaped plate vibrating in 4th mode.

Fig. 22. Modal deflections W̄ for 451 right triangular plate vibrating in 4th mode.
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stress resultants can be observed from these 3D views, which further confirm the accuracy of the LSFD
solutions for modal stress resultants.

The peak values of modal deflections and stress resultants as well as their locations in the completely free
vibrating circular, elliptical, lifting-tab shaped and 451 right triangular plates are summarized in Tables 9–12.
From the data in these tables, together with the 3D views and contour plots in Figs. 7–26, one can observe
the details of the distributions of the modal stress resultants for the given modes of these completely free
vibrating plates.
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Fig. 23. First principal modal bending moments M̄x0 for 451 right triangular plate vibrating in 4th mode.

Fig. 25. Maximum modal twisting moments M̄x00y00 for 451 right triangular plate vibrating in 4th mode.

Fig. 24. Second principal modal bending moments M̄y0 for 451 right triangular plate vibrating in 4th mode.
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4. Conclusions

In this study, the recently developed LSFD meshfree method has been successfully applied for solving
vibration problems of circular, elliptical, lifting-tab shaped and 451 right triangular plates with free edges. It is



ARTICLE IN PRESS

Table 9

Peak values and corresponding locations of modal displacements W̄ , modal principal bending moments M̄x0 and M̄y0 , maximum modal

twisting moments M̄x00y00 and maximum modal shear forces Q̄x000 for completely free circular plate (v ¼ 0.3)

Mode

4th 6th 7th 9th

W̄max 1 1 1 1

r=a 1 0 1 1

W̄min �1 �0.7424 �1 �1

r=a 1 1 1 1

M̄x0 2.2451 6.9502 6.2950 17.826

r=a 0.8268 0 0.9629 0.4197

M̄y0 �2.2443 6.9489 �6.3019 �17.807

r=a 0.8600 0 0.9666 0.4080

M̄x00y00 1.7916 1.1615 3.1378 4.8585

r=a 0 0.8420 1 0.5312

Q̄x000
4.2350 14.102 17.329 84.775

r=a 0.7212 0.5380 0.8219 0

Fig. 26. Maximum modal shear forces Q̄x000 for 451 right triangular plate vibrating in 4th mode.

Table 10

Peak values and corresponding locations of modal displacements W̄ , modal principal bending moments M̄x0 and M̄y0 , maximum modal

twisting moments M̄x00y00 and maximum modal shear forces Q̄x000 for completely free elliptical plate (a/b ¼ 2, v ¼ 0.3)

Mode

4th 5th 6th 7th

W̄max 1 1 1 1

(X,Y) (71, 0) (�0.64, �0.38) (0.64, 0.38) (�1, 0) (70.79, �0.31)

W̄min �0.4836 �1 �1 �1

(X,Y) (0, 70.5) (�0.64, 0.38) (0.64, �0.38) (1, 0) (70.79, 0.31)

M̄x0 0.7699 4.3197 7.6471 11.334

(X,Y) (70.86, 0) (0.39, 0.38), (�0.39, �0.38) (0.43, 70.44) (0, 0.5)

M̄y0 �3.4342 �4.3188 �7.6476 �11.336

(X,Y) (0, 0) (�0.39, 0.38) (0.39, �0.38) (�0.44, 70.44) (0, �0.5)

M̄x00y00 1.6665 3.6687 3.8424 6.3295

(X,Y) (0, 70.5) (0, 0) (70.46, 70.44) (70.48, 0)

Q̄x000
5.4731 12.293 25.754 38.523

(X,Y) (70.53, 0) (70.60, 0) (0, 70.11) (70.79, 0)
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Table 12

Peak values and corresponding locations of modal displacements W̄ , modal principal bending moments M̄x0 and M̄y0 , maximum modal

twisting moments M̄x00y00 and maximum modal shear forces Q̄x000 for completely free 451 right triangular plate (Fig. 2 Right, v ¼ 0.3)

Mode

4th 5th 6th 7th

W̄max 1 1 1 1

(X,Y) (1, 0), (0, 1) (1, 0) (0, 0) (1, 0)

W̄min �0.5529 �1 �0.5411 �1

(X,Y) (0.5, 0.5) (0, 1) (0.55, 0) (0, 0.55) (0, 1)

M̄x0 1.1359 11.325 9.9135 25.337

(X,Y) (0.04, 0.70)(0.70, 0.04) (0, 0.48) (0.11, 0.11) (0.32, 0.68)

M̄y0 �8.2285 �11.334 �17.003 �25.337

(X,Y) (0.5, 0.5) (0.47, 0) (0.49, 0) (0, 0.49) (0.68, 0.32)

M̄x00y00 4.1144 5.8294 9.7100 13.176

(X,Y) (0.5, 0.5) (0.49, 0) (0, 0.49) (0.40, 0) (0, 0.40) (0.35, 0.65) (0.65, 0.35)

Q̄x000
16.149 45.676 64.528 117.97

(X,Y) (0.68, 0.21) (0.21, 0.68) (0.21, 0.21) (0.26, 0.06) (0.06, 0.26) (0.47, 0.47)

Table 11

Peak values and corresponding locations of modal displacements W̄ , modal principal bending moments M̄x0 and M̄y0 , maximum modal

twisting moments M̄x00y00 and maximum modal shear forces Q̄x000 for completely free lifting-tab shaped plate (Fig. 2 Left, v ¼ 0.3)

Mode

4th 5th 6th 7th

W̄max 1 1 1 1

(X,Y) (�0.5, 0) (0.14, �0.58) (1.64, 70.99) (�0.20, �0.46)

W̄min �0.4796 �1 �0.7959 �1

(X,Y) (1.06, 70.90) (0.14, 0.58) (2.5, 0) (�0.20, 0.46)

M̄x0 0.4022 1.8144 2.1877 3.9269

(X,Y) (2.42, 0) (0.56, �0.73) (1.67, 70.91) (1.05, 0.90)

M̄y0 �1.3719 �1.8244 �3.2768 �3.6443

(X,Y) (0.79, 70.81) (0.57, 0.73) (0.37, 70.66) (0.06, 0.55)

M̄x00y00 0.7322 1.2925 1.7638 2.2865

(X,Y) (0.75, 70.79) (1.14, 0) (1.77, 0) (0.20, 70.60)

Q̄x000
1.4130 2.9322 6.1269 8.4088

(X,Y) (0.19, 0) (0.26, 0) (1.12, 70.58) (�0.14, 0)
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shown that the LSFD method can be efficiently used to solve high-order PDEs with multiple boundary
conditions. High-order derivatives can be approximated by using the LSFD formulations and the chain rule of
discretization. The LSFD formulations for approximating derivatives in terms of local nt-coordinate system at
boundary are proposed as an alternative way to discretize the boundary condition equations in which the
derivatives are given in terms of local nt-coordinate system. The fourth-order governing PDE for free
vibration of thin isotropic plates is discretized in two steps in which the first step reduces the fourth-order PDE
to a second-order PDE and the second step reduces the second-order PDE to an algebraic equation. The two
boundary conditions are implemented by solving the discretized PDEs for the boundary conditions of the free
edge and then coupling with the discretized governing PDE.

The efficiency of the LSFD method was established with the yielding of not only accurate frequency
parameters and mode shapes, but also accurate modal stress resultants for these completely free plates. It
should be pointed out that the accurate stress resultants presented for these completely free vibrating plates are
new, and they should be useful as reference solutions for VLFS engineers.
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